Radiation Risk in Perspective

USACE-NWK

8 September 2014

Discussion Outline

- What is a safe level of Radiation?
 - ► Radiation Basics
 - ▶ Dose vs. Risk Models
 - Regulatory Approach
- How is it determined if a site requires remediation?
 - ► Risk Assessments
 - How Remediation Goals are Determined
 - ► Preliminary Remediation Goals

Radiation Basics

- Radio"activity" is the number of atoms decaying per time
 - ► For very low contaminated sites, units are picoCuries (pCi)
 - ► 1 pCi = 2.22 atoms decaying per minute
- Atoms decay by releasing energy and/or particles
 - ▶ When the particles hit us, energy is imparted
 - ► Results in exposure
- Dose is a measure of the impact of exposure
 - ► For very low contaminated sites units are millirems (mrem)
- Risk is a unit less value that expresses the chance of harmful effects resulting from exposure
 - ► At Superfund sites, risk is the chance that chemicals from a site will cause health and/or ecological problems.
- Dose relates to risk: generally, the higher the dose, the higher the risk

Radiation Sources

- Natural radiation is all around us
 - Cosmic photons and particles from the sun
 - ► Terrestrial materials in the earth's crust
 - ▶ Foods we eat
 - ► Internal in the body
 - ▶ In the air we breathe
 - ▶ In the water we drink
- Man made (non medical) radiation is a small fraction of our exposure

Radiation Exposure in the United States

- Everyone is exposed to radiation every day
- We are exposed to approximately 620 mrem per year
- Without medical dose, the average dose in St Louis area is approximately 340 mrem per yr

Dose to Risk Models

- We are exposed to radiation constantly, but what is safe?
- Several models estimate the dose to risk relationship
- Regulations are based on the linear model

Regulatory Approach

- The regulatory approach is based on the linear (no threshold) dose model
 - ► Conservative (likely overestimates risk)
 - Assumes a dose of radiation has the potential to cause an equivalent increase in risk
- EVERYTHING (driving, flying, smoking, etc.) carries some level of risk
- Regulations for hazardous waste sites refer to acceptable risk, not "safe" levels

Regulatory Approach

- 40 CFR 300.430(e) sets the (CERCLA) acceptable risk range for hazardous and radioactive waste sites
 - ➤ Carcinogen (Radionuclides)
 Acceptable Risk Range: 1 in
 10,000 to 1 in 1,000,000
 lifetime increase in cancer risk
 (note: risk of getting cancer not
 risk of death)
 - ► Chance of getting cancer is now roughly 1 in 2 for males and 1 in 3 for females
- Compare to risk of death:
 - ► Cancer 1 in 4(M) 5(F)
 - ▶ Driving (St. Louis) 1 in 10,000

Lifetime Risk of Cancer Incidence

Recap of Key Points

- Everyone is exposed to radiation every day
- Regulations are conservatively based to ensure safety
- Regulatory approach is to state in terms of "acceptable risk"
- Acceptable risk range: 1 in 10,000 to 1 in 1,000,000 additional cancer risk (also referred to as 1x10-4 to 1x10-6)

How is it Determined if a Site Requires Remediation?

- Hazardous waste regulations require a Health-Based Risk
 Assessment be performed and used to make decisions for addressing contamination at the site
- Risk Assessments:
 - ▶ Determine: Is there a risk? Who is at risk? How great is the risk? and What is causing the risk?
 - ► Evaluate all exposure scenarios:
 - Contaminants of concern (chemical and radiological)
 - Media of concern (soil, ground water, surface water, air, dusts, etc.)
 - Receptors (residents, workers, trespassers, ecological, etc.)
 - Exposure Pathways (inhalation, direct contact, ingestion, etc.)
- If risks exceed 1 in 10,000, action may be required
 - ► Engineering Controls
 - ► Land Use Controls
 - ▶ Remediation

Examples of Exposure Pathways

Determining Risk

- Only <u>complete</u> exposure pathways are considered
 - ► If groundwater is not used (in impacted area), no complete pathway
 - ► If surface soils not contaminated, off-site exposure due to dust inhalation is not a concern
- All land uses are considered (current and future)
- Evaluate carcinogens and non-carcinogens (utilize hazard quotients for non cancer causing effects)
- Conservative assumptions are built in to the variables used in risk assessment calculations
 - Conservative assumptions in risk assessments tend to overestimate risk

Example Risk Assessment Exposure Scenario

Current Conditions

- ► Contaminants (Uranium, Thorium, Radium)
- ▶ Media impacted (surface soils)
- ▶ Site security, fenced
- ► Land use controls (no residential, no use of ground water)
- ► Lab data and modeling results indicate no off-site inhalation receptors

Potential Receptors

- ► Current: Groundskeeper, security staff, trespasser
- ► Future: Groundskeeper, recreational user, trespasser, commercial user, construction worker, adjacent building user, outdoor storage worker

Potentially Complete Exposure Pathways

- ► Inhalation of fugitive dust and radon
- Incidental ingestion of soil
- ► Dermal contact with soil

► External radiation exposure from contaminated soil

BUILDING STRONG®

Example Risk Calculation

- For each receptor, chemical, and exposure pathway, risk calculations are performed
- Simplified example calculation for Cancer Risk due to inhalation:

$$C_{\text{exposure pt}} = C_{\text{Air}} \times (IR/BW) \times (ET \times EF \times ED) / AT$$

Increased Cancer Risk = IUR x C_{exposure pt}

C=concentration (actual) AT=averaging time (d)

IR=inhalation rate (m3/hr) ET=exposure time (hr/d)

ED=exposure duration (yrs) BW=body weight (kg)

EF=exposure frequency (d/yr) IUR=Inhalation Unit Risk

- Complete all calculations, calculate the total risk for each receptor and pathway. Sum all calculated risks.
- If Total Cancer Risk > 1 x 10⁻⁴, action may be required

West Lake

- Baseline Risk Assessment conducted in 2000 (OU1 Area 1, Area 2, Ford Property)
 - ► Carcinogens (including radionuclides & daughters)
 - ▶ Non Carcinogens
 - ▶ 1000 year study period, includes decay & in-growth
 - ► Per Risk Assessment Report
 - No exposure to off site receptors
 - Future risk for groundskeeper and outside storage worker exposures exceeded 1 in 10,000 risk
- Risk to be addressed through remedy

How are Remediation Goals Determined?

- Remediation Goals (RG) are sometimes referred to as clean up level, remedial action criteria, etc.
- RGs are primarily determined based on regulation or risk
 - ► Regulation may set acceptable RG level (may not be based on risk)
 - RGs set by regulations are considered protective
 - Examples: Maximum Contaminant Levels for drinking water and UMTRCA
 - ► Risk-based RGs are established to result in a target risk within the CERCLA risk range
- RGs are contaminant and media specific concentrations that demonstrate compliance with the remedial action objective of keeping risk within the CERCLA acceptable risk range

Impact of Background Levels on RGs

- When a constituent is not naturally occurring, there is no "background" concentration
- When a constituent is naturally occurring (ex: naturally occurring radioactive material), that naturally occurring amount is the "background" concentration
- Naturally occurring constituents are typically not remediated, therefore, the background concentrations are added to the RGs

Impact of Levels Background on RGs

 Although often presented as a single value, Background varies and is a range. It should not be thought of as a single value.

Nation	U238 (pCi/g)		Ra226 (pCi/g)		Th232 (pCi/g)	
	Mean	Typical Range	Mean	Typical Range	Mean	Typical Range
United States	0.9	0.1 - 3.8	1.1	0.2 - 4.3	0.9	0.1 - 3.5
Missouri	1.1	0.3 - 1.7	1.1	0.3 - 1.4	1.0	0.3 - 1.3
Ohio	1.4	0.8 - 2.2	1.5	0.8 - 2.5	1.0	0.7 – 1.5
Russia	0.5	0 - 1.8	0.7	0 - 2.1	0.8	0.1 - 2.1
Greece	0.7	0 - 6.5	0.7	0 - 6.5	0.6	0 - 5.1
West Lake	1.3	0.74-1.85	1.1	0.95-1.19	0.9	0.52-1.26

Different Sites Can Have Different RGs

- This is due to factors that impact how the RGs are determined:
 - ► Regulatory authority
 - ► Radiation standards / ARARs
 - ▶ Health assessment approaches
 - ▶ Land uses / exposure scenarios
 - ► Input parameters
 - ► Physical settings

West Lake

- West Lake Background (mean + 2σ):
 - ► Ra-226 1.06 + 0.24 pCi/g = 1.30 pCi/g (Missouri mean + 2σ: 1.7 pCi/g)
 - ► Th-232 0.9 + 0.66 pCi/g = 1.56 pCi/g (Missouri mean + 2σ: 1.6 pCi/g)
 - ► Ra-226 + Th-232 = 2.86 ≈ 2.9 pCi/g (Missouri Ra+Th = 3.3 pCi/g)
- Remediation Goal:
 - ► ARAR UMTRCA: 5 pCi/g + Background (Ra226, Th232)
 - ► UMTRCA goal is for residential use*
 - ► Background (95% UCL): 2.9 pCi/g
 - ▶ Derived Remediation Goal*: Ra-226 & Th-232: 7.9 pCi/g
- * Use of UMTRCA residential remediation goal is conservative for West Lake, given land use restrictions that prevent residential use

What are Preliminary Remediation Goals (PRGs)?

- PRGs are used when first investigating a site to determine if additional investigation is needed (BMAC)
- Very conservative screening levels
- Follow the CERCLA acceptable risk range of excess cancer incidence rate of 1 in 1,000,000

Relative Risks for Comparison

- For comparison, some other lifetime risk factors
 - ▶ Death from heart disease ~ 1 in 6
 - ▶ Death from falls ~ 1 in 160
 - ▶ Death from storms ~ 1 in 30,000
 - ▶ Death from earthquake or landslide ~ 1 in 100,000
 - ▶ Death from lightning ~ 1 in 130,000
 - ▶ Death from food poisoning ~ 1 in 600,000
 - ▶ Death from accidental fireworks discharge ~ 1 in 650,000

^{*} Source = National Center for Health Statistics 2008 Mortality Data

PRGs vs. RGs

PRGs

- Preliminary, not final
- Contaminant and media specific
- Risk based (generic scenarios)
- Usually do not consider
 - ▶ Site specifics
 - ▶ Technical Feasibility
 - Schedule
 - ▶ Resources
 - ▶ Costs
 - ► Regulations
 - ▶ Background
- Used as screening
- Very Conservative

RGs

- Final Remediation Goal
- Contaminant and media specific
- Must consider
 - ▶ Site Specifics
 - Technical Feasibility
 - ▶ Resources
 - Regulations (may not be risk based)
 - ▶ Risk
- Used to determine if site meets remedial action objectives

Summary

Remediation Goals

- ▶ Risk-based (site-specific calculations) or ARARs (regulations)
- ▶ Remediation goals will be different from site to site
- ▶ Background impacts
 - Background levels are ranges, not a single number
 - Vary from site to site

Preliminary Remediation Goals

- Screening only, used to determine if additional investigation is required
- ▶ Intended to be very conservative

Summary

- What is a safe level of Radiation?
 - ► Radiation exposure occurs every day to every one
 - ► Regulations are conservatively based on the assumption that any exposure to radiation results in some risk
 - ► Regulatory approach is to state in terms of <u>"acceptable risk"</u>
 - ▶ Regulations define 1 in 10,000 increased chance of getting cancer as "acceptable risk"
- How is it determined if a site requires remediation?
 - ► Risk Assessment who is exposed, what they are exposed to, how much they are exposed to, & how they are exposed
 - ▶ Risk Assessment results > 1 in 10,000 may require action

Questions?

